Sol-Gel Microspheres Doped with Glycerol: A Structural Insight in Light of Forthcoming Applications in the Polyurethane Foam Industry
نویسندگان
چکیده
Porous silica-based microspheres encapsulating aqueous glycerol can be potential curing agents for one-component foams (OCFs). Such agents have the advantage of an enhanced sustainability profile on top of being environmentally friendly materials. A synthetically convenient and scalable sol-gel process was used to make silica and organosilica microspheres doped with aqueous glycerol. These methyl-modified silica microspheres, named "GreenCaps", exhibit remarkable physical and chemical stability. The microspheres were characterized by scanning electron microscopy, transmission electron microscopy at reduced pressure, and cryogenic nitrogen adsorption-desorption analysis. The structure of the materials was also analyzed at the molecular level by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. As expected, the degree of methylation affects the degree of encapsulation and pore structure. Microspheres similarly methylated, however, can differ considerably in surface area and pore size due to the templating effect of glycerol on the organosilica structure. The results of the structure analysis reveal that glycerol is efficiently encapsulated, acts as a template, barely leaches over time, but is released by depressurization. A proper application of these microspheres can later on enhance both the environmental and health profile, as well as the technical performance (curing speed, foam quality, and froth thixotropy) of spray polyurethane foams.
منابع مشابه
Cover Picture: Sol-Gel Microspheres Doped with Glycerol: A Structural Insight in Light of Forthcoming Applications in the Polyurethane Foam Industry (ChemistryOpen 2/2015)
متن کامل
VISIBLE-LIGHT-ACTIVE NITROGEN DOPED TIO2 NANOPARTICLES PREPARED BY SOL-GEL ACID CATALYZED REACTION
Yellow-colored nitrogen doped TiO2 photocatalyst and a pure TiO2 powder were synthesized via sol-gel method using TiCl4 and urea as raw materials. However, the synthesis procedure for nitrogen doped TiO2 was catalyzed by acid that dialed with controlled precipitation and slow nucleation. According to XRD analysis, the nitrogen doped TiO2 consisted of anatase phase of titania which was a signifi...
متن کاملAg-doped TiO2 Nanocomposite Prepared by Sol Gel Method: Photocatalytic Bactericidal Under Visible Light and Characterization
In this reaserch, photocatalyst titanium dioxide was doped with silver and modified by polyethylene glycol by sol gel method and the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of the present study was to evaluate the photocatalytic bactericidal effects of prepared nanocomposite on human p...
متن کاملVisible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources
In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...
متن کاملFacile Magnesium Doped Zinc Oxide Nanoparticle Fabrication and Characterization for Biological Benefits
Zinc oxide (ZnO) is the most common and widely utilized nanomaterial for biological applications due to their unique characteristics, such as biocompatibility, biosafety and antimicrobial along with thermal stability and mechanical strength. Magnesium (Cu) is considered as a significant dopant for ZnO due to their almost similar ionic radii and their role in biological activitie...
متن کامل